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The differences between the results using static and
dynamic screening appear to be even smaller at
low electron densities. Since our ansatz is identi-
cal to that of DK in absence of screening, the dif-
ferences between our results and those of DK in the
unscreened case are either due to the different
numerical procedures employed in evaluating the
integrals or to the difficulty in determining € Z(E, w,)
from the graph in DK.

As may be seen from Figs. 3 and 4 the asymp-
totic formulas agree quite well with the more de-
tailed calculation for frequencies greater than twice
the Fermi energy.. The asymptote also fits well
even for relatively low frequencies, though there
is no a priori reason to expect it to be very good
in that region. Consequently, Eqs. (19) and (20)
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may be used as interpolation formulas or to give
order-of-magnitude estimates of the damping for
frequencies as low as the Fermi energy. Such an
approximation is desirable since the numerical
calculation is quite difficult even with static screen-
ing. For very high frequencies where screening
becomes unimportant the kinematic approximations
assumed in deriving the asymptotic forms become
exact and the closed form (19) gives the correct re-
sult for damping due to electron correlations.
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A five-level k- D analysis is used to compute the principal effective-mass parameters at
k=0 in diamond- and zinc-blende-type semiconductors. A semiempirical model is developed
to describe the dependence of the momentum matrix elements on lattice constant, ionicity, and
d-electron shells in the cores.- Satisfactory agreement with available experimental data is

achieved with six fitted parameters.

1. INTRODUCTION

A number of important semiconductor properties
require for their analysis quite detailed knowledge
of effective~-mass values at the principal band ex-
trema, but even for some of the most well-known
materials it is at present rather difficult to make
the best choice from the wealth of experimental and
theoretical data existing in the literature, It should
also be emphasized that even though simple formal
expressions for the effective~-mass parameters can
readily be obtained from second-order K+ p per-
turbation theory, the input parameters, notably the
momentum matrix elements, have not been known

with an accuracy sufficient to render the existing
theoretical results reasonably reliable, The reason
for this is connected with the fact that most of the
theoretical work has stressed other aspects of the
band structure, and, as shown recently for Si by
Kane, ! current methods of band-structure calcu-
lation may fit the over-all band structure while
giving rather unsatisfactory values for the band-
edge masses,

In the present work we propose a new procedure
for evaluating the interband momentum matrix ele-
ments at I'(¢=0). Otherwise, our effective-mass
calculation is similar to that given by Cardona® ex-
cept for a few details, Based on earlier observa-
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tions, Cardona assumed that the covalent part of
the p-matrix elements is independent of material,
and others® have made use of the essentially equiva-
lent empiricism that the actual interband momentum
matrix elements are constant within a certain group
of crystals, e.g,, the III-V semiconductors. This
feature has so far not been explained satisfactorily,
because one would certainly expect some influence
from the variation in lattice constant., Later work
by Cardona et al.* used p-matrix elements derived
from pseudopotential calculations, but, as already
indicated, there are reasons to believe that this may
not be an improvement,

Similar to the original work by Cardona,? our
method is based on a five-level k- p model includ-
ing various small correction terms. The basic
parameters in the momentum matrix elements are
obtained from the extremely accurate experimental
valence-band parameters v, va, 75, and « for Ge.’
A proportionality factor describing the effect of
core d electrons is determined from a fit to a-8n,
and a small, but important, higher-band contribu-
tion to the s-like conduction-band mass has been
fixed to give the best over-all agreement with ex-
periment for the III-V compounds. The present
model thus contains six fitted parameters, The
squared p-matrix elements so derived have then
been combined with the most recent information on
corresponding energy gaps to yield the principal
effective-mass parameters pertaining to the band
edges at I'. A final comparison with available ex-
perimental data indicates that our results may be
reliable to within a few percent,

II. ELEMENTAL SEMICONDUCTORS
A. k+p Model

In the homopolar materials the states at £#=0 have
either even or odd parity, and the k- p perturbation
only couples states of opposite parity. For the va-
lence-band edge I'; with energy zero we follow
Dresselhaus, Kip, and Kittel® and introduce the
parameters
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where |X) is the yz-type wave function of the I',;
valence-band states in the case where spin-orbit
coupling is neglected, and j runs over various con-
duction bands with the electron energy E; and of the
indicated symmetry, Furthermore, the spin-orbit
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splitting A; of the I'y; states yields the additional
parameter g,°

4 5 IXIBITy, 1%y,
9m E?

-1

(1p)

From this we derive the Luttinger valence-band
parameters’ ¥,, ¥s, 73, k, and g, where®

yi=— L (F+2G+2H,+2H,)- 1+ 3¢

Yo=—% (F+2G-H,-H,)- 3q ’

1 )
'}‘s=—%-(F—G+H1-H2)+§q ,

k==~ L(F-G-Hy+H)-3-%q.

Following the usual approach, we shall confine the
index j in Eq. (1) to include only the nearest state
of the indicated symmetry because of the larger
energy denominators for more distant bands and
because the momentum matrix elements themselves
decrease with increasing E;, Let

Ep=2/m|{X|P,|TS)|?, )
Ef =2/m|(X| P,| Tys)|?
be the energy equivalents of the principal interband
momentum matrix elements. We then have

F="Eﬁ/E0) H1=_E;/E(')9 (4)

where E, is the fundamental direct p-s energy gap
and E{ the p-p gap at I'. The comparatively small
parameters G and H, will not be factorized because
we know too little about the corresponding band
gaps. ¢ is simplified to®

q=-§ H, &/E; . ®)

The band gap E, is rather accurately known from
numerous experiments, but E; must essentially be
calculated from band theory. This simplest ap-
proach is that due to Van Vechten, ® who finds

Eg =(3.40 eV) (a/ag) ™, (6)

where a is the lattice constant. The spin-orbit
splitting Ag ‘is only known for Ge, where Ay~ 0.18
eV.%1% Based on this result, we shall assume the
general approximation

4570. 644 , @)
where 4 is the well-known spin-orbit splitting of
the valence band at I'. It follows that the calcu-
lated values of ¢ are hardly more than estimates.
Since ¢ is always small, this will have very little
effect on the parameters vy, vs, vs, and k as calcu-
lated from Eq. (2).

The effective mass m” at the I'; conduction-band
edge is given by?

m/mf=1-F(1-y)+F, ®)
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where the second term results from the interaction
with the valence bands I'ys. ,

y=Aa¢/3(Eg+ ) , 9)

and the last term stands for the contribution from
higher-lying states of even parity. Since detailed
information is not available, we shall assume that
F' is constant, and from an over-all fit to experi-
mental values of m: we find

F'~ -2.0, 10)

which is not unreasonable.

The effective mass m:o of the spin-orbit split-
off valence band I'y can also be determined from
the above quantities®:

m/meg="v1+Fy . (11)

Finally, we can calculate the g factors. The hole
g factors at the valence-band edge are described
by k and ¢ (cf. Ref. 5); the conduction-band g factor
g. is given by?

8c=2(1+Fy) 12)
and that of the split-off hole by®
Zso=—2(1+ 2k + Fy). (13)

Zso Will not be computed explicitly since it is ob-
served that

Zso+8c=— 4K, (14)

and this relation also holds quite well for the ionic
materials (cf. Sec. IIIA).

The basic formalism having thus been discussed,
we turn our attention to the central problem: Eval-
uation of the momentum matrix elements, in partic-
ular the quantities E, and Ep.

B. Momentum Matrix Elements

From simple considerations of the momentum
operator one would expect its matrix elements to
be inversely proportional to the lattice constant.
However, values of Ep deduced from Eq. (8) and
experimental conduction-band masses show no cor-
relation with lattice constant, Relativistic contri-
butions are estimated to be very small on the basis
of the linear & terms present in crystals without
inversion symmetry.!! In a reasonably simple
picture, the only other possibility is the influence
on the valence-band wave functions of d-electron
core states. We now show how this effect can be
accounted for quantitatively without detailed band-
structure calculations.

In the dipole approximation, the oscillator strength
for an optical transition from a valence-band state
i to a conduction-band state i’ is given by'?

2 1GIP,1i")12

v ECE (15)

fiie=
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where x signifies light polarized in the x direction.
In particular, for the transition from a state at the
valence-band edge to the I';, conduction band we find

* =/ o= Ep/3E,. (16)
The oscillator strengths satisfy the sum rule'?
2 ﬁi'=4"sNeu ’ (1)

ii’

where N, is the effective concentration of valence
electrons. In the Penn model®® of the low-frequency
dielectric constant €(0), one finds!*

€(0) =1+ 47PN o;/mE 2, (18)
'

in which E, is an average electronic band gap that
scales as a power function of the lattice constant for
homopolar materials. % With no d electrons in the
core, Ng¢=N, where N corresponds to eight elec-
trons per diatomic volume. In order to account
for the d electron effects, Van Vechten!* introduced
the enhancement factor D=N,,,/N, and its values
were deduced from Eq. (18) and experimental evi-
dence on €(0).

Although the sum rule (17) only deals with the
totality of oscillator strengths, it is reasonable to
propose that essentially the same enhancement

factor applies to the individual f;; . Thus, for
example,

Ep=Ep(Si)6, (19)
with

6=[1+ a(D-1)] (as,/a)? (20)

where « is a constant of order unity. From v, 7,,
s, k, and g for Ge,® we can deduce E,(Ge), and
Ep(@-Sn)is also known rather accurately.® Combin-
ing this with D values found by Van Vechten, * we
find

a=1.23, (21)

Since T is the point of highest symmetry in the
Brillouin zone, it is not surprising that the influence
of d electrons is slightly larger than average here
(x>1). It should be noted that both the lattice con-
stant and D tend to increase with atomic number,
and so these effects compensate somewhat in the
scaling factor 6. This is the reason why no defi-
nite trends are observed in Ep.

Since the above d-electron enhancement is a
property of the wave functions at the valence-band
edge, the same scaling applies to all the momen-
tum matrix elements in our calculation. The
scaling factor & should therefore be used also for
EL, G, and H,.

The actual values of Ep, Ep, G, and H, as nor-
malized to Si [cf. Eq. (19)] are determined from
the valence-band parameters measured by Hensel
and Suzuki® for Gebecause these are the most accurate
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mass parameters available. From® y,=13.38
+0.02, v,=4.24+0.02, v3=5.69+0.02, x=3.41
+0.03, ¢=0.06+0.01, and the band gaps listed in
Table I, we find by means of Eq. (2)

Ep(Si)=21.6 eV, E,(Si)=14.4 eV,

H,(Si)=-0.19, 22)

G=-0.75.
Together with F'=~ 2,0 and o=1. 23 discussed
above, these six parameters constitute the basis
of our calculation. Of course, when we presently
extend the formalism to the ionic semiconductors,
there will be new parameters describing the mix-
ing of even and odd wave functions by the anti-
symmetric ionic potential, but this will essentially
be expressed in terms of quantities determined
elsewhere.

III. M-IV AND II-VI COMPOUNDS
A. Effect of lonicity

For the present purpose, the effects of ionicity
have the following four aspects: (a) The lack of
inversion symmetry results in nonzero first-order
K - p intraband matrix elements giving rise to
linear % terms in the dispersion relations; (b) the
prinvcipal band gaps are increased; (c) even and
odd wave functions of the same basic symmetry
(e.g., p symmetry) are mixed so that the momen-
tum matrix elements are modified; and (d) d-elec-
tron core shifts with ionicity strongly affect the
s-like conduction band. The linear 2 terms will
be neglected because they are very small and con-
nected with relativistic spin-orbit effects.! Fur-
thermore, experimental evidence is not very
consistent on this point. The three other effects
will be considered in some detail.

For the simple bonding-antibonding band gaps,
Van Vechten®* has shown more or less empirically
that the influence of ionicity can be described
quantitatively through the electronegativity C which
is derived from the dielectric constant and Eq. (18)
by assuming'*

E2=F2,C% (23)

where E, is the average covalent band gap and is

a function of the bond length only. By analogy, the

Eg gap between T'y5, and T'y5, states can be expressed
9

as

Eg= (Egi+ C"?)/2, (24)

with the homopolar part Eg, calculated from Eq.
(6). Van Vechten® assumed C'=C, but stated later
that somewhat larger values should be used for
p-p gaps. This is also in agreement with recent
pseudopotential band calculations by Walter and
Cohen, * and we find that

C’=1,25C (25)
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gives a reasonable fit to these calculations. For
the Ey gap, we shall use the experimental values.
Once the symmetric and antisymmetric compo-
nents of the Ey gap known, it is straightforward to
describe the admixture of the homopolar wave
functions. Other bands of p symmetry are as-
sumed tobe very remote. The behavior of the wave
functions has already been treated by Cardona,
and so we leave out the details here. In this way
we find that H, is still given by Eq. (4) and that

H,~ H,(Si)zb

’

G=G(Si)z6 , (26)
where
z= (Eq+Eg,)/2E} . (27)

For the TI'j, conduction band, the situation is a
little different because this state is strongly in-
fluenced by the presence of d electrons in the core
combined with ionicity. For the isoelectronic
series Ge, GaAs, ZnSe, calculations by Walter
and Cohen'® of the pseudocharge density associated
with this state have shown that the initially anti-
symmetric state (for Ge) tends to concentrate on
the anion (Se) site. This means that the I'y, and
I'y5, wave functions, behave in the same way with
ionicity, and so the corresponding interband mo-
mentum matrix element is rather insensitive to
the antisymmetric ionic potential. For such ma-
terials, the homopolar formulas for F [ Eq. (4)],
m/m¥*[Eq. (8)], and g.[Eq. (12)] are still valid.
On the other hand, if d electrons are absent as in
AlP, the TI'y, wave function is unaffected by ionicity
because there are no levels of similar symmetry
within reasonable distance. In that case, there is
no matching between TI';, and I'y5, states, and
Cardona’s formulas® should be valid. In skew com-
pounds containing d electrons, the differences in
core properties are expected to lead to incomplete
matching. It is therefore convenient to introduce
a matching parameter 8 which is zero for no d
electrons, 1 for isoelectronic compounds with
d electrons, and somewhere in between otherwise.
The defining equation is

EP=EP(Si)5[B+(1—B)Z] . (28)

Then Eq. (4) gives the relevant F, and the con-
duction-band mass is given by a modification of (8):

m/m¥=1-F(1-y-x)+F, 29)
where x stands for the contribution from the TI'y;,
band and is approximately

~ B Ey E¢-Egy
B+(1-B)z Eyg—-E, 2E;

x (30)

This term may contribute up to 15% in the worst
case. Similar to Eq. (28), the formula for g,
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Eq. (12), must be modified to include the Iy;, where
interaction. We then find , ,

y'= Ay/3(Eq - Ey) . (32)

g.=2[1+F (y+y")] , (31) v’ is usually insignificant. The values of the

TABLE I. Principal band gaps in eV at 0 K used in the mass-parameter calculation. E{ is computed from Eq. (24).
B is the matching factor for the ionicity behavior of the wave function of the Ty, and Ty;, band-edge states. § is the scal-
ing factor for the squared momentum matrix elements as calculated from Eq. (20) using lattice constants and D factors
listed in Ref. 14. For HgTe, HgSe, and HgS, D was estimated to be 1.30, 1,28, and 1.19, respectively, from experi-
mental data on Ep and the fact that these materials are contracted (see Ref. 18).

Crystal E, Ay E{ B o
C 13.04* ~ 0P 7.63 . 2.31
Si 4.07* 0.04°¢ 3.40 . 1.00
Ge 0. 894 0. 29° 3.16 .. 1,22
Sn —0.413f 0.77° 2.40 cee 1.10
AlP 5,122 0.05° 5.18 0 0.99
AlAs 3.06¢ 0.288 4.66 0.5 1.06
AlSb 2.30P 0.75! 4,73 0.5 0.96
GaN 3.62¢ —0.01° 9.12 0.5 1.66
GaP 2. 87% 0.08% 5.33 0.5 1.13
GaAs 1.52! 0.34™¢ 4.81 1 1.19
Gasb 0.81™ 0. 77%Bm 3.69 0.5 1.11
InP 1.42° 0.13M° 5.10 0.5 1.05
InAs 0.42° 0.38¢ 4.40 0.5 1.13
InSb 0.237° 0.81M¢ 3.49 1 1.07
ZnoO 3.40° -0.02% 13.60 0.5 1.56
ZnS 3.80t 0.07t 8.47 0.5 1.11
ZnSe 2.824 0.43% 7.67 1 1.12
ZnTe 2.39¥ 0.92b 6.23 0.5 1.03
Cds 2,56°% 0.073 7.85 0.5 1.00
CdSe 1.84° 0.423 7.39 0.5 1.02
CdTe 1.60% 0.91% 6.01 1 0.96
HgS —-0.15" 0.07° 9.56 0.5 1.05
HgSe —-0.24" 0. 45P 6.80 0.5 1.06
HgTe - 0.303% 1.00% 5.58 0.5 0.97
Calculated in Ref. 9. Rev. 136, A1467 (1964).

YEstimate based on general trends. °In agreement with observations in CdSnP,, see J. E.
°S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Rowe and J. L. Shay, Phys. Rev. B 3, 451 (1971).

Phys. Rev. Letters 4, 173 (1960). ®C. R. Pidgeon, D. L. Mitchell, and R. N. Brown,
9M. Rouzeyre, H. Mathieu, D. Auvergne, and J. Phys. Rev. 154, 737 (1967).

Camassel, Solid State Commun. 7, 1219 (1969). 9C. R. Pidgeon, S. H. Groves, and J. Feinleib, Solid
°B. O. Seraphin and R. B. Hess, Phys. Rev. Letters State Commun. 5, 677 (1967).

14, 138 (1965); R. L. Aggarwal, Phys. Rev. B 2, 446 TE. J. Johnson, Phys. Rev. Letters 19, 352 (1967).
(1970). SD. W. Langer, R. N. Euwema, K. Era, and T. Koda,
fReference 8. Phys. Rev. B 2, 4005 (1970). A, applies to the corre-
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matching factor B for the intermediate cases can-
not be obtained from simple arguments. In order
to minimize the error we shall fix it at 0. 5. To
take B=1 for the isoelectronic compounds is, of
course, also an approximation. It is evident that
the arbitrariness in this parameter is one of the
principal sources of uncertainty in our calculation.
The subsequent comparison with experiments shows,
however, that the inclusion of 8+ 0 is a definite
improvement over Cardona’s method, 2 which corre-
sponds to B=0.

B. Polaron Effects

It is a well-known feature that the band structure
as deduced from experiments contains corrections
to the simple one-electron band structure because
of the electron-phonon interaction. For the pres-
ent discussion we shall distinguish between the
nonpolar short-range (SR) and the polar long-range
(LR) interactions.

The SR self-energy arises from interaction with
a broad spectrum of phonons, and recent theoreti-
cal developments!” indicate that it can be consid-

ered as a local vibrational effect on the one-electron

potential. In that case, its over-all influence on
the effective-mass parameters is described by
conventional K * p theory using the “renormalized”’
band gaps and momentum matrix elements. Typ-
ical SR band-gap self-energies are less than
0.1 eV and are probably representative of actual
potential changes. It is therefore reasonable to
assume that the squared momentum matrix ele-
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ments (e.g., Ep~ 20 eV) undergo changes of simi-
lar absolute magnitude, and such changes are
thus negligible.

The important part of the LR interaction couples
the carrier to the polarization associated with
long-wavelength optical vibrations in ionic crystals.
The self-energy of the band edges (i.e., the polaron
binding energy) is small compared to the important
energy gaps, and the polaron mass renormaliza-
tion must usually be dealt with separately because
it depends strongly on the type of experiment in-
volved.

We conclude that our calculation gives the mass
parameters at zero temperature renormalized
with respect to the SR interaction and bare relative
to the LR interaction. An extension to finite tem-
peratures is in principle possible now that the
lattice-constant dependence of the squared momen-
tum matrix elements is prescribed [cf. Egs. (19)
and (20)], but more knowledge of the D factor in
Eq. (20) will be needed.

IV. DISCUSSION OF RESULTS
A. Results

In Table I we list the relevant input parameters
for our calculations. Some of these are directly
experimental, whereas others, notably Eg and 0,
have been calculated from lattice constants, D
factors, and C values tabulated by Van Vechten®'!*
and supplemented by other sources for the Hg-
chalcogenides, !® GaN, '® and ZnO.!® Our results
for the principal effective-mass parameters at

TABLE II. Calculated band parameters for diamond- and zinc-blende-type semiconductors. All effective masses are in

units of the free-electron mass.

The signs have been chosen positive for a normal band structure like that of Ge.

Crystal E, (V) f, me & 71 Y2 3 K qa mig my mg,
C 49.8 1.27 0.36 2.00 4.62 ~0.38 1.00 -0.63 0.00 a a 0.36
Si 21.6 1.77 0.23 1.96 4,22 0.39 1.44 -0.26 0.01 0.53 0.16 0.24
Ge 26.3 9.9 0.038 ~2.86 13.35 4.25 5.69 3.41 0.07 0.35 0.043 0.092
Sn 23.8 (19.2) -0.058 84.4 -14.97 ~-10.61 -8.52 -—11.84 0.30 0.29 -0.029 0.038
AlP 17.7 1.15 b b 3.47 0.06 1.15 -0.54 0.01 0.63 0.20 0.29
AlAs 21.1 2.30 0.22 1.52 4.04 0.78 1.57 0.12 0.03 0.76 0.15 0.24
AlSb 18.7 2.71 0.18 0.52 4.15 1.01 1.75 0.31 0.07 0.94 0.14 0.29
GaP 22,2 2.58 0.17 1.85 4.20 0.98 1.66 0.34 0.01 0.79 0.14 0.24
GaAs 25.7 5.63 0.067 -0.06 7.65 2.41 3.28 1.72 0.04 0.62 0.074 0.15
GasSb 22.4 9.2 0.045 -7.12 11.80 4.03 5.26 3.18 0.13 0.49 0.046 0.14
InP 20.4 4.80 0.080 1.20 6.28 2.08 2.76 1.47 0.01 0.85 0.089 0.17
InAs 22,2 17.6 0.023 -—14.8 19.67 8.37 9.29 7.68 0.04 0.60 0.027 0.089
InSb 23.1 32.5 0.014 —48.4 35.08 15.64 16.91 14.76 0.15 0.47 0.015 0.107
ZnS 20.4 1.79 0.28 1.94 2.54 0.75 1.09 0.17 0.00 1.76 0.23 0.40
ZnSe 24.2 2.86 0.14 -5.74 3.77 1.24 1.67 0.64 0.02 1.44 0.149 0.30
ZnTe 19.1 2.66 0.18 0.44 3.74 1.07 1.64 0.42 0.05 1.27 0.154 0.33
CdTe 20.7 4.32 0.096 -1.12 5.29 1.89 2.46 1.27 0.05 1.38 0.103 0.28
HgS 18.8 (41.8) -0.006 ~—70.6 —-41.28 —21.00 -20.73 -—=21.54 0.00 2.78 -0.012 —0.013
HgSe 19.4 (26.9) —0.042 117.4 -25.96 —13.69 —13.20 —14.29 0.02 1.36 =-0.019 0.031
HgTe 18.0 (19.8) —0.031 59.0 —-18.68 ~10.19 -9.56 -—10.85 0.06 1.12 -—0.026 0.102

*Formalism invalid because vy, and y; have opposite
sign.

YUnreliable because E,~ E{.
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TABLE III. Comparisen of calculated and experimental
conduction-band masses and values of m/m¥ +m/mg.
For ZnOand ZnSe, the experimental value of m} includes
an appreciable polaron renormalization.

m¥/m m/mE+m/m¥,

Crystal Theory Expt. Theory Expt.

Ge 0.038 0.038* 37.1 36.82

Sn -0.058 ~0.058

GaN 0.14

GaAs 0.067 0.066° 21.5 21,54

Gasb 0.045 0.045° 29.1 29, 8f

InP 0.080 0.077%

InAs 0.023 0.024%1

InSh 0.0141 0.0137  81.0 79}

ZnO 0.15 0.19%

ZnS 0.28 0.28!

ZnSe 0.14 0.17™

ZnTe 0.18 0.16"

cds 0.18 0. 20°

Cdse 0.13 0.13°

CdTe 0.096 0.096%

*R. L. Aggarwal, Phys. Rev. B 2, 446 (1970).

bReference 8.

°R. Kaplan, M. A. Kinch, and W. C. Scott, Solid State
Commun. 7, 883 (1969); G. E. Stillman, C. M. Wolfe,
and J. O. Dimmeck, ibid. 7, 921 (1969).

4M. Reine, R. L. Aggarwal, B. Lax, and C. M. Wolfe,
Phys. Rev. B 2, 458 (1970).

°E. Adachi, J. Phys. Chem. Solids 30, 776 (1968).

fM. Reine, R. L. Aggarwal, and B. Lax, Solid State
Commun. 8, 35 (1970).

¢E. D. Palik and R. F. Wallis, Phys. Rev. 123, 131
(1961).

bC. R. Pidgeon, D. L. Mitchell, and R. N. Brown,
Phys. Rev. 154, 737 (1967).

ip. H. Dickie, E. J. Johnson, and D. M. Larsen, Phys.

Rev. Letters 18, 599 (1967); C. J. Summers, R. B.
Dennis, B. S. Wherrett, P. G. Harper, and S. D. Smith,
Phys. Rev. 170, 755 (1968).

JR. L. Aggarwal, Bull. Am. Phys. Soc. 12, 100 (1967).

kD, C. Reynolds and T. C. Collins, Phys. Rev. 185,
1099 (1969).

3. C. Miklesz and R. G. Wheeler, Phys. Rev. 153,
913 (1967). This value is for hexagonal ZnS.

™D. T. F. Marple, J. Appl. Phys. 35, 1879 (1964).

"H. D. Riccius and R. Turner, J. Phys. Chem. Solids
29, 15 (1968).

°J. J. Hopfield and D. G. Thomas, Phys. Rev. 122,
35 (1961).

PR. G. Wheeler and J. O. Dimmock, Phys. Rev. 125,
1805 (1962).

%K. K. Kanazawa and F. C. Brown, Phys. Rev. 135,
A1757 (1964).

I" are shown in Table II, where we include values
of E » which may be useful when a small E, gap
makes it necessary to consider the s-p k- f) inter-
action more accurately. !’ Furthermore, we also
show the computed values of the fundamental os-
cillator stremgth f,, given by Eq. (16).%°

Altkough the valence-band parameters v, 7z,
and y; give a cemplete description of the parabolic
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band structure near the edge, the effective masses
in specific directions are certain functions of these
parameters. For the heavy holes, this involves

a considerable cancellation, and so v;, v, and

vs are shown with a larger number of significant
figures than their accuracy warrants. To facili-
tate comparison between materials we have evalu-
ated the average light-hole mass m } and the den-
sity-of-states heavy-hole mass m ¥ calculated in
the following way according to Lax and Mavroides. ™
Define the light-to-heavy-hole (average) splitting
parameter (B’ in the notation of Ref. 21)

Y = (2v3+ 203)1/2 (33)
and the heavy-hole anisotropy factor®

Y=6(¥B-%) v (n-7), (34)
then

m¥/m=(vy+v)?, 35)

miy/m= (v —v)! (1+0.057,+ 0. 016412)2/3,
(36)
Computed values of m Fand m ¥ are included in
Table II. v, is not shown because it turns out

‘(somewhat as a property of our model) that v,

varies but little; i.e., the relative anisotropy of
the heavy-hole band is essentially the same for
most of the materials studied here. However, for
diamond and some other first-row compounds not
shown, the anisotropy is found to be much smaller.

B. Comparison with Experiment

One of the principal purposes of the present work
has been to produce effective-mass parameters in
better agreement with experiment than previously
achieved. #%% In Table III, we compare our values
of the conduction-band mass m ¥ with available ex-
perimental data including the wurtzite compounds
GaN, ZnO, CdS, and CdSe to which the theory also
applies.? The general agreement is rather en-
couraging, in particular since the important basic
parameters of the calculations have been derived
from the valence-band parameters of Ge. We also
compare the mass parameter m/m*+m/m with
recent magneto-optical data.

Since our calculation is in no respect based on
Si (except as a hypothetical reference material),
a crucial test of the validity of the momentum
matrix element scaling, Eq. (20), is provided by
accurate cyclotron resonance data on v;, v,, and
vg for this material. Previous ambiguities about
these parameters have now been settled by Hense
and Owner- Petersen and Samuelsen. 2 Hensel
finds (vy, ¥2, v3)= (4.28, 0.375, 1.45) as compared
to our values (4.22, 0.39, 1.44). Less accurate
cyclotron resonance data for holes are available
for GaSb, ?® InSb, ?® and ZnTe. 2" In general, we
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find good agreement for the light-hole mass and
for the heavy-hole mass in the (100) direction,
whereas our anisotropy of the heavy-hole band is
somewhat larger. This might indicate that our
crude treatment of the G term associated with T'y,,
levels in Eqs. (1) and (2) is insufficient for the
more ionic materials. However, for InSb the den-
sity-of-states heavy-hole mass m }=0.47n com-
pares favorably with that deduced directly from
experiments: m}=0.43m. 2

Accurate experimental evidence exists for a
few g factors. Thus, for InSb,?° g,=48, and for
InAs, 3 g.=—-14."7, while our results are — 48. 4
and - 14. 8, respectively. Since experiment and
theory agree on the value of m ¥, the above results
are not really a critical test of our calculation for
these materials.

C. Conclusion

An important aspect of the present semiempirical
mass-parameter calculation is the new treatment
of the principal momentum matrix elements, in
particular their dependence on d electrons in the
cores. This influence shows up in the scaling of
the covalent part with Van Vechten’s D factor as
expressed in Eq. (20) and in the “matching factor”
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B which for ionic semiconductors describes the
effect of core-shift-induced transfer of the conduc-
tion-band s-state pseudocharge density towards
the anion site. The general agreement between’
experiment and the results of the present theory
supports the physical significance of the D factor
and, through N ;=DN in Eq. (18), the relevance
of scaling with lattice constant of the average co-
valent band gap E,.'* This seems to be one of the
most questioned® features of Phillips and Van
Vechten’s ionicity theory. Furthermore, the
scaling of momentum matrix elements in Eq. (20)
includes a natural lattice-constant dependence.

As already pointed out, the combined effects of
lattice-constant variation and core d electrons
more or less cancel so that E, turns out roughly
independent of material in agreement with previous
empirical observations. However, when high
accuracy is wanted, the detailed behavior of Ep
must be included, and all first-row compounds
exhibit very high values of E, as a consequence of
the small lattice constant. Thus for Zn0 we find
E p=28 eV, which eventually leads to the unexpected-
ly small value of m}*=0.15m. It would be of con-
siderable interest to test this result by more direct
experimental evidence than presently available.
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